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     Abstract 
 
     In this work we present the research project aimed to 
designing and implementing WebFEM, a Web application 
for the efficient simulation of engineering problems whose 
solution is based on the Finite Element Method (FEM). 
WebFEM is accessible through the Web, and the final user 
interfaces are the most common Web browser pages. The 
architecture of the simulator has been accurately designed 
in order to allow an easy distribution of the computation 
over cluster of computers linked on the Web. The 
programming tools used for the implementation have been 
chosen in order to get portable and flexible Web software, 
also suited for educational purposes. The distributed 
architecture allows using WebFEM in advanced 
application contexts, like distance learning and simulation 
activities of distributed working teams. 
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     1. Introduction 
 

     The FEM (Finite Element Method, [1]) is one of the 
most common numerical methods, thanks to its usability 
in many engineering, but not only, contexts. As other 
numerical methods its main aim is to reduce the solution 
of complicated PDEs (partial differential equations) set for 
continuum problems to the solution of a finite set of 
simpler equations. This can be achieved thanks to the 
discretization of the original model of the problem with a 
finite number of elements and nodes, where the equations 
have to be locally solved according to local boundary 
conditions. FEM software simulators evolved as local, 
stand-alone programs. Attention was made to the 
processing speed, more then to the easiness of use or to 
the sharing of the program on Internet. Today most spread 
programs (ANSYS[2], ABAQUS [3]) reflect this 
evolution. Moving from one release to the following, they 
pay more attention to add new element types or models 

then to the software design methodology and to the 
technology. The traditional FEM simulators are 
proprietary software, with or without graphical interactive 
interfaces, accessible locally or via a remote login from 
remote computers: in fact, the user opens a terminal on the 
simulator host. The limitations are many: the net load can 
seriously affect the efficiency of the session; graphical 
limitations are possible; the limited resources on the 
simulator host can strongly limit the number of concurrent 
users. Some optimisation is available in case of batch 
sessions, where the user connects to the host, sends his/her 
request and disconnects allowing the host to optimise the 
computation resource requests arriving from many users. 
The users re-connect after a certain time to download the 
results on their own computer. A step forward in the Web 
direction is proposed by the development of Web 
interfaces to traditional applications [4].  

     Today, the simulators field starts to show a strong 
interest in an evolution of the technology [5][6]. As a 
proof, we mention two recent research projects of the 
Swiss ETH Polytechnic (Zurich) and of the German 
IMTEK laboratory (University of Freiburg). The projects 
have developed new simulation tools specifically designed 
for microelectronics problems, introducing for the first 
time an object-oriented design of the code. In both cases 
the system runs on a single platform and is a stand-alone 
system with customized interfaces. A similar project is 
“FEMEngine”, developed at ETH Polytechnic (Zurich) 
and at IMTEK (Freiburg, Germany) [7][8][9]. 

     Today, there is also a strong research interest in studies 
and experiments exploring the validity of distributed 
computing solutions[10][11][12]. WebFEM places in this 
research context. The WebFEM project is aimed to define 
a new software architecture for Web oriented FEM 
simulation modules. The simulator is designed with the 
most advanced software engineering techniques and 
implemented with Internet tools so to become a real Web 
application. With the term “Web application” we mean an 
application accessible on the Web through Web browsers, 
which does not require additional local software (except a 
Web browser), portable to different platforms and 
operative systems, adapt to the integration with other Web 
tools. Orienting 

the applications to the Web technology has many 
advantages: 

• no local installation of modules is needed 
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• no local powerful computers are required  
• it is possible to share the tools among many users on 
the net 
• the user accesses always an  updated release of the 
simulator 
• the access is through familiar interfaces, the Web 
browsers, with no need of specific training 
• it is possible to imagine the connection to other Web 
applications 
• the computing load can be distributed over cluster of 
computers. 
     With respect to the last item, there are at least two 
ways the WebFEM architecture allows exploiting the 
computing distribution: 
• processing distribution:  the possibility to distribute 
the processing on a cluster of computer (see following 
sections) allows handling big simulation problems without 
using expensive multi-processor computer. Further, it 
allows distributing several concurrent users requests on 
the cluster, balancing the overall application load (Fig.1) 
• simulator modules distribution: basic processing 
modules (e.g. system solver, mesh generator) could be 
installed at each node of a WebFEM cluster; specific 
modules (e.g. PDEs, shape functions, post-processing) 
could differ at each node, according to the research 
interest of the users accessing each node. Occasionally, 
the user could need a PDE (or other specific module) not 
available on his/her cluster node: he/she can access the 
required module on another computer of the cluster. The 
possibility to use remote objects (see sections 2 and 3) 
allows a transparent access to all the modules of a cluster 
(Fig. 2). Research teams whose members work on 
different sites (countries, laboratories) are good candidates 
for an exploitation of simulation tools bases on this new 
architecture. 
 
     In section 2 is reported the description of the first 
experiment of the project: the implementation of a Web 
oriented FEM simulator (WebFEM1.0) and the 
distribution of the processing on cluster of 3 computers. In 
section 3, the first tests about the efficiency of the 
distribution of WebFEM on the cluster are reported. In 
section 4 considerations about the future development of 
the project are reported. 
 
     2. Approach and methods 
 
     The aforementioned targets (modularity, usability 
through the net, portability,...) have been pursued with the 
systematic use of the object-oriented paradigm and of 
software engineering techniques like the UML (Unified 
Modelling Language) [13][14]in all the stages of the 
project: analysis, design, implementation and test. The 
main programming language used, JAVA, is object-
oriented. The HTML, XML and SOAP (the languages for 
the development of the user interfaces and for the network 

communication) are completely compatible with the most 
used Web servers and browsers. Where the tools could 
result not efficient for the problem (e.g. JAVA based 
scientific computation is still inefficient) the distribution 
of the processing on the cluster can introduce a sufficient 
compensation and avoid the need of dedicated powerful 
and expansive multi-processor computers.  
 
     The first step of the project has been the design of a 
basic FEM simulator, implemented as a Web application. 
The WebFEM1.0 [15] is the first release. It allows the 
simulation of 1D, 2D elastic static problems (Fig. 3). An 
accurate object-oriented design, based on UML analysis 
technique, allows adding easily new elements, a new set 
of shape functions and new PDEs, without changing the 
previous code, but adding independent JAVA classes. The 
simulator is completely implemented in JAVA and the 
interfaces are JServlet-based Web browser pages. 
 
     The JAVA language is less efficient with respect to 
other traditional scientific languages, e.g. C, Fortran, C++. 
Nevertheless the distribution of the processing on a cluster 
of computer can give adequate performances. FEM 
simulations can distribute the following algorithms which 
could benefit of a parallelization: 
• mesh refinement 
• stiffness matrix assembly   
• solver. 
 
     This is possible thanks to the extreme object-oriented 
design, which created separated objects, classes (and, 
during the processing, independent instances) for 
elements, equations, shape functions and the organization 
of the solver. 
 
     The simulation is distributed over the computer cluster 
via remote calls managed by the Java Web Service 
Technology [16]. The methods solving the problems are 
implemented in Java objects which are replicated on the 
computers of the cluster and executed according to the 
remote calls activated on the master node (Fig.1 and Fig. 
4). 
  
     In order to evaluate the efficiency of the distribution of 
modules processing we have set a cluster, made of three 
computers connected to a LAN. The full WebFEM1.0 has 
been installed on one workstation of the cluster, and 
copies of the classes that execute the parallel simulation 
algorithms are available also on the other two computers 
(a SUN workstation and a portable PC). I.e., the 
parallelizable parts of the code have been distributed on 
different computers. The user accesses the simulator on 
the central installation (i.e. where the whole WebFEM is 
installed) and when he/she runs a simulation, a scheduler 
sends calls to the cluster. Each call asks to one of the 
computer specified by the scheduler to run a piece of code 
and to return the result to the central installation. The 
communication among the computers is based on the 
SOAP protocol and the JAVA Web Services technology.  



In detail, follows the description of the hardware and 
software set-up: 
• hardware 

o SUN Sparc Ultra5 OS5.8 - 128 MB of RAM - 
micro 167 MHz of clock 

o SUN Sparc Blade100 - 1664 MB of RAM - micro 
ultrasparc 2e 500MHz of clock. 

o Portable PC DELL Windows2000 OS - 128 MB 
RAM – Pentium III Intel 702 MHz of clock 

• software: 
o the JAVA2 Standard Edition in the version 

j2sdk1.4.0_02 [17]; 
o the JAVA Web Services Developer Pack in the 

version jwsdp-1_0_01, an integrated toolset that 
allows developers to build, test and deploy XML 
applications, Web services, and Web applications 
through SOAP protocol. It integrates a Tomcat 
Web server [16][18]. 

 
     We have run a first test on the distribution of the 
assembly of the stiffness matrix of 2D geometries in static 
elastic simulations. The assembly (the WebFEM1.0 
KMatrixAssembly class) is basically a loop of calls to the 
algorithm which calculates the stiffness matrix for each 
element of the mesh (the WebFEM1.0 “TermKElement” 
class). A copy of this algorithm has been installed on all 
the computers of the cluster.  WebFEM1.0 implements a 
scheduler which is called by the stiffness matrix assembly 
algorithm loop. The scheduler instanciates calls (JAVA 
RPC calls) to local or remote objects. Each call can run 
one or more time the remote object methods. In order to 
allow the asynchronous return of the results from the 
remote object (i.e.: the scheduler can run a further call 
before the previous has returned its result) the JAVA 
thread class and its methods have been used. Fig. 4 shows 
the programming implementation of the distribution.  
 
     3. Results 
 
     In order to have a first evaluation of the efficiency of 
the proposed processing distribution architecture we have 
compared the same number of stiffness matrix assembly 
operations both on the stand-alone WebFEM and on the 
version distributed on the described computer cluster. We 
have run assembly operations referred to rectangular 
planes meshed with 100 and 484 elements. These meshes 
correspond to 6400 and 30976 nodal operations. 
 
     The stand-alone WebFEM is installed on the Dell PC. 
In the stand-alone simulations the number of nodal 
operations to be executed is the only varying parameter. In 
Tab.1 we report the average processing time for the 
different simulations (i.e. 100 and 484 elements meshes) 
in the central column.  
 
     The simulations run on the cluster of computers can 
exploit processing distribution varying two parameters: 
the global number of operations to be executed on each 
computer and the number of threads. On the master 

computer  (i.e. where the central simulator is installed, the 
portable Dell PC) it is possible to activate one or more 
thread directed to each computer of the cluster. Each 
thread, through a remote call, runs a packet of remote 
operations. It is possible to better exploit the cluster 
sending more then one packet to each computer, i.e. 
running two or more parallel packet on each computer. 
For this reason we have tried to vary the number of 
threads among which to distribute the global number of 
operations in order to see if there is a better combination. 
Changing this parameter from 3 (the situation where we 
run one packet of operation on each computer of the 
cluster) to 90 (30 parallel packets running on each 
computer) we have found that in our cluster seem to be an 
optimum number of threads, between 30 and 50. This 
optimum point is common in both cases:  6400 and 30976 
operations. Net traffic factors as well as the computer 
resources are responsible for this fact and in future 
development of the project we will investigate on 
balancing algorithms that could help in automatically 
finding the optimum number of thread for each computer 
of the cluster.  In Table 1, in the rightmost column, we 
report the best results obtained in the distributed 
simulations. In Fig. 5 we report two series of global 
processing times plotted versus the number of parallel 
threads activated: the first series refers to 6400 operations 
(100 elements mesh), the second to 30976 operations (484 
elements mesh), both cases processed by the version of 
WebFEM1.0 distributed on our cluster of computer. 
 
     We have started to compare the matrix assembly times 
of our system with those of a commercial software, 
ANSYS [2]. In the first benchmarks we   found an average 
ratio of 5:1 in favour of ANSYS. But further tests, with a 
broader cluster, are needed in order to have affordable 
results. 
 

Operation 
number 

Average global 
processing time 
(msec) – stand 

alone WebFEM1.0 

Average global 
processing time 

(msec) – 
distributed 

WebFEM1.0 
6400 3462 3402 
30976 14883 16800 
Table 1 – Average processing times of the simulations 
run 
 
     4. Conclusions and future work 
 
     The first results show a good velocity of the distributed 
architecture with respect to the traditional stand-alone 
programs. Considering that in this first test the distribution 
has been applied only to one of the time-consuming FEM 
algorithms, i.e. the stiffness matrix algorithm, these results 
are favourable to the JAVA RPC technology introduced 
and encourages to keep on developing the original idea of 
a distributed Web FEM tool. 
 



     Future steps of the research project will be extending 
the distribution to other time-consuming algorithms, e.g. 
the solver and the meshing and mesh refinement, studying 
the system behaviour in larger clusters and improving the 
benchmarks with commercial software. 
 
     The generality of the technical solutions adopted 
suggests testing the proposed architecture on other 
numerical methods or time-consuming computations. 
Emerging fields where the aforementioned ideas could be 
exploited are the distance learning and the e-business. 
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Fig. 1 – Distributed architecture: distributing the processing load 
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Fig. 2 – Distributed architecture: access to remote simulation objects 
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Fig. 3 – WebFEM1.0: the selection of the PDE and of the boundary conditions 

 
 
 



 
Fig. 4 – Distribution programming solution 
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Fig. 5 – Processing times of the simulations run on the cluster of computer 

 


