
WebFEM: A WEB APPLICATION FOR DISTRIBUTED NUMERICAL SIMULATIONS

Lorenza Ferrario1
ferrario@itc.it

Cristiana Armaroli1

armaroli@itc.it

Elena Betta1
betta@itc.it

Paolo Conci

ing.paolo.conci@virgilio.it

1ITC-irst, Divisione Microsistemi, Via Sommarive 16, 38050 Povo (TN), Italy
Ph. +39 0461 314463 Fax +39 0461 302040

 Abstract

 In this work we present the research project aimed to
designing and implementing WebFEM, a Web application
for the efficient simulation of engineering problems whose
solution is based on the Finite Element Method (FEM).
WebFEM is accessible through the Web, and the final user
interfaces are the most common Web browser pages. The
architecture of the simulator has been accurately designed
in order to allow an easy distribution of the computation
over cluster of computers linked on the Web. The
programming tools used for the implementation have been
chosen in order to get portable and flexible Web software,
also suited for educational purposes. The distributed
architecture allows using WebFEM in advanced
application contexts, like distance learning and simulation
activities of distributed working teams.

 Keywords

 Finite Element Methods, Web-based simulation,
Object-Oriented implementation, Computer cluster

 1. Introduction

 The FEM (Finite Element Method, [1]) is one of the
most common numerical methods, thanks to its usability
in many engineering, but not only, contexts. As other
numerical methods its main aim is to reduce the solution
of complicated PDEs (partial differential equations) set for
continuum problems to the solution of a finite set of
simpler equations. This can be achieved thanks to the
discretization of the original model of the problem with a
finite number of elements and nodes, where the equations
have to be locally solved according to local boundary
conditions. FEM software simulators evolved as local,
stand-alone programs. Attention was made to the
processing speed, more then to the easiness of use or to
the sharing of the program on Internet. Today most spread
programs (ANSYS[2], ABAQUS [3]) reflect this
evolution. Moving from one release to the following, they
pay more attention to add new element types or models

then to the software design methodology and to the
technology. The traditional FEM simulators are
proprietary software, with or without graphical interactive
interfaces, accessible locally or via a remote login from
remote computers: in fact, the user opens a terminal on the
simulator host. The limitations are many: the net load can
seriously affect the efficiency of the session; graphical
limitations are possible; the limited resources on the
simulator host can strongly limit the number of concurrent
users. Some optimisation is available in case of batch
sessions, where the user connects to the host, sends his/her
request and disconnects allowing the host to optimise the
computation resource requests arriving from many users.
The users re-connect after a certain time to download the
results on their own computer. A step forward in the Web
direction is proposed by the development of Web
interfaces to traditional applications [4].

 Today, the simulators field starts to show a strong
interest in an evolution of the technology [5][6]. As a
proof, we mention two recent research projects of the
Swiss ETH Polytechnic (Zurich) and of the German
IMTEK laboratory (University of Freiburg). The projects
have developed new simulation tools specifically designed
for microelectronics problems, introducing for the first
time an object-oriented design of the code. In both cases
the system runs on a single platform and is a stand-alone
system with customized interfaces. A similar project is
“FEMEngine”, developed at ETH Polytechnic (Zurich)
and at IMTEK (Freiburg, Germany) [7][8][9].

 Today, there is also a strong research interest in studies
and experiments exploring the validity of distributed
computing solutions[10][11][12]. WebFEM places in this
research context. The WebFEM project is aimed to define
a new software architecture for Web oriented FEM
simulation modules. The simulator is designed with the
most advanced software engineering techniques and
implemented with Internet tools so to become a real Web
application. With the term “Web application” we mean an
application accessible on the Web through Web browsers,
which does not require additional local software (except a
Web browser), portable to different platforms and
operative systems, adapt to the integration with other Web
tools. Orienting

the applications to the Web technology has many
advantages:

• no local installation of modules is needed

mailto:ferrario@itc.it
mailto:betta@itc.it

• no local powerful computers are required
• it is possible to share the tools among many users on
the net
• the user accesses always an updated release of the
simulator
• the access is through familiar interfaces, the Web
browsers, with no need of specific training
• it is possible to imagine the connection to other Web
applications
• the computing load can be distributed over cluster of
computers.
 With respect to the last item, there are at least two
ways the WebFEM architecture allows exploiting the
computing distribution:
• processing distribution: the possibility to distribute
the processing on a cluster of computer (see following
sections) allows handling big simulation problems without
using expensive multi-processor computer. Further, it
allows distributing several concurrent users requests on
the cluster, balancing the overall application load (Fig.1)
• simulator modules distribution: basic processing
modules (e.g. system solver, mesh generator) could be
installed at each node of a WebFEM cluster; specific
modules (e.g. PDEs, shape functions, post-processing)
could differ at each node, according to the research
interest of the users accessing each node. Occasionally,
the user could need a PDE (or other specific module) not
available on his/her cluster node: he/she can access the
required module on another computer of the cluster. The
possibility to use remote objects (see sections 2 and 3)
allows a transparent access to all the modules of a cluster
(Fig. 2). Research teams whose members work on
different sites (countries, laboratories) are good candidates
for an exploitation of simulation tools bases on this new
architecture.

 In section 2 is reported the description of the first
experiment of the project: the implementation of a Web
oriented FEM simulator (WebFEM1.0) and the
distribution of the processing on cluster of 3 computers. In
section 3, the first tests about the efficiency of the
distribution of WebFEM on the cluster are reported. In
section 4 considerations about the future development of
the project are reported.

 2. Approach and methods

 The aforementioned targets (modularity, usability
through the net, portability,...) have been pursued with the
systematic use of the object-oriented paradigm and of
software engineering techniques like the UML (Unified
Modelling Language) [13][14]in all the stages of the
project: analysis, design, implementation and test. The
main programming language used, JAVA, is object-
oriented. The HTML, XML and SOAP (the languages for
the development of the user interfaces and for the network

communication) are completely compatible with the most
used Web servers and browsers. Where the tools could
result not efficient for the problem (e.g. JAVA based
scientific computation is still inefficient) the distribution
of the processing on the cluster can introduce a sufficient
compensation and avoid the need of dedicated powerful
and expansive multi-processor computers.

 The first step of the project has been the design of a
basic FEM simulator, implemented as a Web application.
The WebFEM1.0 [15] is the first release. It allows the
simulation of 1D, 2D elastic static problems (Fig. 3). An
accurate object-oriented design, based on UML analysis
technique, allows adding easily new elements, a new set
of shape functions and new PDEs, without changing the
previous code, but adding independent JAVA classes. The
simulator is completely implemented in JAVA and the
interfaces are JServlet-based Web browser pages.

 The JAVA language is less efficient with respect to
other traditional scientific languages, e.g. C, Fortran, C++.
Nevertheless the distribution of the processing on a cluster
of computer can give adequate performances. FEM
simulations can distribute the following algorithms which
could benefit of a parallelization:
• mesh refinement
• stiffness matrix assembly
• solver.

 This is possible thanks to the extreme object-oriented
design, which created separated objects, classes (and,
during the processing, independent instances) for
elements, equations, shape functions and the organization
of the solver.

 The simulation is distributed over the computer cluster
via remote calls managed by the Java Web Service
Technology [16]. The methods solving the problems are
implemented in Java objects which are replicated on the
computers of the cluster and executed according to the
remote calls activated on the master node (Fig.1 and Fig.
4).

 In order to evaluate the efficiency of the distribution of
modules processing we have set a cluster, made of three
computers connected to a LAN. The full WebFEM1.0 has
been installed on one workstation of the cluster, and
copies of the classes that execute the parallel simulation
algorithms are available also on the other two computers
(a SUN workstation and a portable PC). I.e., the
parallelizable parts of the code have been distributed on
different computers. The user accesses the simulator on
the central installation (i.e. where the whole WebFEM is
installed) and when he/she runs a simulation, a scheduler
sends calls to the cluster. Each call asks to one of the
computer specified by the scheduler to run a piece of code
and to return the result to the central installation. The
communication among the computers is based on the
SOAP protocol and the JAVA Web Services technology.

In detail, follows the description of the hardware and
software set-up:
• hardware

o SUN Sparc Ultra5 OS5.8 - 128 MB of RAM -
micro 167 MHz of clock

o SUN Sparc Blade100 - 1664 MB of RAM - micro
ultrasparc 2e 500MHz of clock.

o Portable PC DELL Windows2000 OS - 128 MB
RAM – Pentium III Intel 702 MHz of clock

• software:
o the JAVA2 Standard Edition in the version

j2sdk1.4.0_02 [17];
o the JAVA Web Services Developer Pack in the

version jwsdp-1_0_01, an integrated toolset that
allows developers to build, test and deploy XML
applications, Web services, and Web applications
through SOAP protocol. It integrates a Tomcat
Web server [16][18].

 We have run a first test on the distribution of the
assembly of the stiffness matrix of 2D geometries in static
elastic simulations. The assembly (the WebFEM1.0
KMatrixAssembly class) is basically a loop of calls to the
algorithm which calculates the stiffness matrix for each
element of the mesh (the WebFEM1.0 “TermKElement”
class). A copy of this algorithm has been installed on all
the computers of the cluster. WebFEM1.0 implements a
scheduler which is called by the stiffness matrix assembly
algorithm loop. The scheduler instanciates calls (JAVA
RPC calls) to local or remote objects. Each call can run
one or more time the remote object methods. In order to
allow the asynchronous return of the results from the
remote object (i.e.: the scheduler can run a further call
before the previous has returned its result) the JAVA
thread class and its methods have been used. Fig. 4 shows
the programming implementation of the distribution.

 3. Results

 In order to have a first evaluation of the efficiency of
the proposed processing distribution architecture we have
compared the same number of stiffness matrix assembly
operations both on the stand-alone WebFEM and on the
version distributed on the described computer cluster. We
have run assembly operations referred to rectangular
planes meshed with 100 and 484 elements. These meshes
correspond to 6400 and 30976 nodal operations.

 The stand-alone WebFEM is installed on the Dell PC.
In the stand-alone simulations the number of nodal
operations to be executed is the only varying parameter. In
Tab.1 we report the average processing time for the
different simulations (i.e. 100 and 484 elements meshes)
in the central column.

 The simulations run on the cluster of computers can
exploit processing distribution varying two parameters:
the global number of operations to be executed on each
computer and the number of threads. On the master

computer (i.e. where the central simulator is installed, the
portable Dell PC) it is possible to activate one or more
thread directed to each computer of the cluster. Each
thread, through a remote call, runs a packet of remote
operations. It is possible to better exploit the cluster
sending more then one packet to each computer, i.e.
running two or more parallel packet on each computer.
For this reason we have tried to vary the number of
threads among which to distribute the global number of
operations in order to see if there is a better combination.
Changing this parameter from 3 (the situation where we
run one packet of operation on each computer of the
cluster) to 90 (30 parallel packets running on each
computer) we have found that in our cluster seem to be an
optimum number of threads, between 30 and 50. This
optimum point is common in both cases: 6400 and 30976
operations. Net traffic factors as well as the computer
resources are responsible for this fact and in future
development of the project we will investigate on
balancing algorithms that could help in automatically
finding the optimum number of thread for each computer
of the cluster. In Table 1, in the rightmost column, we
report the best results obtained in the distributed
simulations. In Fig. 5 we report two series of global
processing times plotted versus the number of parallel
threads activated: the first series refers to 6400 operations
(100 elements mesh), the second to 30976 operations (484
elements mesh), both cases processed by the version of
WebFEM1.0 distributed on our cluster of computer.

 We have started to compare the matrix assembly times
of our system with those of a commercial software,
ANSYS [2]. In the first benchmarks we found an average
ratio of 5:1 in favour of ANSYS. But further tests, with a
broader cluster, are needed in order to have affordable
results.

Operation
number

Average global
processing time
(msec) – stand

alone WebFEM1.0

Average global
processing time

(msec) –
distributed

WebFEM1.0
6400 3462 3402
30976 14883 16800
Table 1 – Average processing times of the simulations
run

 4. Conclusions and future work

 The first results show a good velocity of the distributed
architecture with respect to the traditional stand-alone
programs. Considering that in this first test the distribution
has been applied only to one of the time-consuming FEM
algorithms, i.e. the stiffness matrix algorithm, these results
are favourable to the JAVA RPC technology introduced
and encourages to keep on developing the original idea of
a distributed Web FEM tool.

 Future steps of the research project will be extending
the distribution to other time-consuming algorithms, e.g.
the solver and the meshing and mesh refinement, studying
the system behaviour in larger clusters and improving the
benchmarks with commercial software.

 The generality of the technical solutions adopted
suggests testing the proposed architecture on other
numerical methods or time-consuming computations.
Emerging fields where the aforementioned ideas could be
exploited are the distance learning and the e-business.

 Bibliography

[1] O. C. Zienkiewicz, R. Taylor, The finite element

method Voll. I-II (McGraw-Hill: London, 1991)
[2] Ansys Multiphysics (http://www.ansys.com)
[3] ABAQUS (http://www.hks.com)
[4] MOPLE

(http://www.cimne.upc.es/projects/mople/)
[5] G. Fox, Introduction to Web Computing,

Computing in Science and Engineering", March-
April, 2001, 52-53

[6] G. Fox, W. Furmanski, Computing on the Web.
New approaches to Parallel Procssing. Petaop and
Exaop Performance in the Year 2007, Internal
Report Northeast Parallel Architectures Center,
Syracuse University, 1997

[7] ISE-TCAD (http://www.ise.ch)
[8] Emmenegger M., An Object-Oriented Design for

Efficient Microsystem Simulation Ph. D. Thesis No.
1334. (ETH Zurich, Verlag der Fachvereine,
Zurich, 1999)

[9] Taschini S., Modelling of slender structures in
microsystems, Ph. D. Thesis No. 13764 (ETH
Zurich, Verlag der Fachvereine, Zurich, 2000)

[10] http://www.npac.syr.edu
[11] D. P. Anderson, J. Kubiatowicz, The World Wide

Computer, Scientific American, March 2002, 28-35
[12] http://www.aspenleaf.com/distributed/distrib-

projects.html
[13] R. I. Mackie, Object-Oriented Methods and Finite

Element Analysis (Saxe-Coburg Pubblications,
2001)

[14] G. Booch, J. Rumbaugh, I. Jacobson, UML: The
unified modeling language - User Guide (Addison-
Wesley 1999)

[15] L. Ferrario, C. Armaroli, WebFEM: a Web based
FEM simulator, Virtual Prototyping Today:
Industrial Impacts and Future Trends, Bergamo,
Italy, October 3-4 2002

[16] http://java.sun.com/webservices
[17] http://java.sun.com
[18] http://jakarta.apache.org/tomcat/index.html

 Figures

Fig. 1 – Distributed architecture: distributing the processing load

Web Browser

Web Browser

In
te

rn
et

Master Node

K

K1 K2

K3 K4

Big Problem

Decomposition

Distribution

K1

K2

K4

K3

Cluster Node 1

Cluster Node 2

Cluster Node3

FEM Simulati
on

Request

Web Browser

Web Browser

In
te

rn
et

In
te

rn
et

Master Node

KK

K1K1 K2K2

K3K3 K4K4

Big Problem

Decomposition

Distribution

K1K1

K2K2

K4K4

K3K3

Cluster Node 1

Cluster Node 2

Cluster Node3

FEM Simulati
on

Request

http://www.ansys.com/
http://www.abaqus.com/
http://www.cimne.upc.es/projects/mople/
http://www.npac.syr.edu/
http://www.buginword.com
http://www.buginword.com
http://jakarta.apache.org/tomcat/index.html

Fig. 2 – Distributed architecture: access to remote simulation objects

Web Browser

Web Browser

WebFEM:
1. Pre-processing
2. Structural PDEs

Web Browser

WebFEM:
1. Pre-processing
2. Electrostatics PDEs

WebFEM:
1. Pre-processing
2. Fluid dynamics PDEs

Internet

Research Team 1

Research Team 2 Research Team 3

Web Browser

Web Browser

WebFEM:
1. Pre-processing
2. Structural PDEs

WebFEM:
1. Pre-processing
2. Structural PDEs

Web Browser

WebFEM:
1. Pre-processing
2. Electrostatics PDEs

WebFEM:
1. Pre-processing
2. Electrostatics PDEs

WebFEM:
1. Pre-processing
2. Fluid dynamics PDEs

WebFEM:
1. Pre-processing
2. Fluid dynamics PDEs

Internet

Research Team 1

Research Team 2 Research Team 3

Fig. 3 – WebFEM1.0: the selection of the PDE and of the boundary conditions

Fig. 4 – Distribution programming solution

WebFEM1.0

GUI
MatrixAssembler

TermKElement

TermKElement

Central workstation Cluster workstation #1

Cluster workstation #n

…

KMatrixAssembly
Thread(#1){
}

KMatrixAssembly
Thread(#n){
}

KMatrixAssembly
Thread(#1){
}Scheduler

TermKElement

RPC

Call(p
arams)

RPCCall(params)

RPC
Call(params)

Result

Result

Result

WebFEM1.0WebFEM1.0

GUI
MatrixAssembler

TermKElementTermKElement

TermKElementTermKElement

Central workstation Cluster workstation #1

Cluster workstation #n

…

KMatrixAssembly
Thread(#1){
}

KMatrixAssembly
Thread(#1){
}

KMatrixAssembly
Thread(#n){
}

KMatrixAssembly
Thread(#n){
}

KMatrixAssembly
Thread(#1){
}

KMatrixAssembly
Thread(#1){
}Scheduler

TermKElementTermKElement

RPC

Call(p
arams)

RPCCall(params)

RPC
Call(params)

Result

Result

Result

Average Global Processing Time:
6400 Operations

3000

3500

4000

4500

5000

0 50 100

Thread #

P
ro

ce
ss

in
g

Ti
m

e
(m

se
c)

Average Global Processing Time:
30976 Operations

3000

8000

13000
18000

23000

28000

0 50 100 150

Thread #

P
ro

ce
ss

in
g

Ti
m

e
(m

se
c)

Fig. 5 – Processing times of the simulations run on the cluster of computer

